Comprehensive Behavioral Phenotyping of Ryanodine Receptor type 3 (RyR3) Knockout Mice: Decreased Social Contact Duration in Two Social Interaction Tests

نویسندگان

  • Naoki Matsuo
  • Koichi Tanda
  • Kazuo Nakanishi
  • Nobuyuki Yamasaki
  • Keiko Toyama
  • Keizo Takao
  • Hiroshi Takeshima
  • Tsuyoshi Miyakawa
چکیده

Dynamic regulation of the intracellular Ca2+ concentration is crucial for various neuronal functions such as synaptic transmission and plasticity, and gene expression. Ryanodine receptors (RyRs) are a family of intracellular calcium release channels that mediate calcium-induced calcium release from the endoplasmic reticulum. Among the three RyR isoforms, RyR3 is preferentially expressed in the brain especially in the hippocampus and striatum. To investigate the behavioral effects of RyR3 deficiency, we subjected RyR3 knockout (RyR3-/-) mice to a battery of behavioral tests. RyR3-/- mice exhibited significantly decreased social contact duration in two different social interaction tests, where two mice can freely move and make contacts with each other. They also exhibited hyperactivity and mildly impaired prepulse inhibition and latent inhibition while they did not show significant abnormalities in motor function and working and reference memory tests. These results indicate that RyR3 has an important role in locomotor activity and social behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles.

The skeletal isoform of Ca2+ release channel, RyR1, plays a central role in activation of skeletal muscle contraction. Another isoform, RyR3, has been observed recently in some mammalian skeletal muscles, but whether it participates in regulating skeletal muscle contraction is not known. The expression of RyR3 in skeletal muscles was studied in mice from late fetal stages to adult life. RyR3 wa...

متن کامل

Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells.

Intracellular Ca(2+) levels control both contraction and relaxation in vascular smooth muscle cells (VSMCs). Ca(2+)-dependent relaxation is mediated by discretely localized Ca(2+) release events through ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). These local increases in Ca(2+) concentration, termed sparks, stimulate nearby Ca(2+)-activated K(+) (BK) channels causing B...

متن کامل

Type 3 and Type 1 Ryanodine Receptors Are Localized in Triads of the Same Mammalian Skeletal Muscle Fibers

The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isoform-specific antibodies to localize RyR3 in muscles of normal and RyR knockout mice. In normal hind...

متن کامل

Response to caffeine and ryanodine receptor isoforms in mouse skeletal muscles.

The response to caffeine was studied in mouse muscles [diaphragm, soleus, and extensor digitorum longus (EDL)] with different ryanodine receptor isoform (RyR1, RyR3) composition and in single permeabilized muscle fibers dissected from diaphragm of wild-type (WT) and RyR3-deficient (RyR3-/-) mice at 1, 15, 30, and 60 postnatal days (PND). The caffeine response decreased during development, and, ...

متن کامل

Comprehensive Behavioral Analysis of Cluster of Differentiation 47 Knockout Mice

Cluster of differentiation 47 (CD47) is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα), a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS), such as the modulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009